A real world application of secure multi-party computations Duplicate bridge for cheapskates

Matthew Johnson matthew.johnson@cl.cam.ac.uk Ralph Owen rho21@cam.ac.uk

University of Cambridge

The 16th International Workshop on Security Protocols

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

Future work

Conclusion

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

Conclusion

Example deal

1st permutation

Order the suits: Clubs Hearts Spades Diamonds 1143 2323 4422 1143 2411 4143 1332 4344 1223 2433 1211 3242 4224

2nd permutation

3231	1224	1243	4421	1233	4421
1311	1432	3332	2441	2244	3332
4141					

Example deal

1st permutation

Order the suits: Clubs Hearts Spades Diamonds 1143 2323 4422 1143 2411 4143 1332 4344 1223 2433 1211 3242 4224

2nd permutation

3231	1224	1243	4421	1233	4421
1311	1432	3332	2441	2244	3332
4141					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Example deal

1st permutation

Order the suits: Clubs Hearts Spades Diamonds 1143 2323 4422 1143 2411 4143 1332 4344 1223 2433 1211 3242 4224

2nd permutation

3231	1224	1243	4421	1233	4421
1311	1432	3332	2441	2244	3332
4141					

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Outline

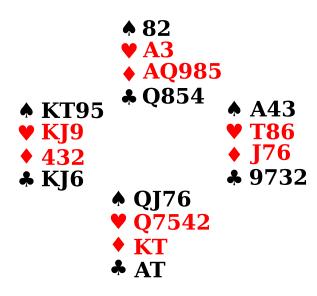
Example deal

Bridge

Protocol

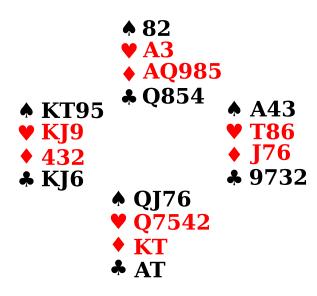
Flaws and corrections

Case study

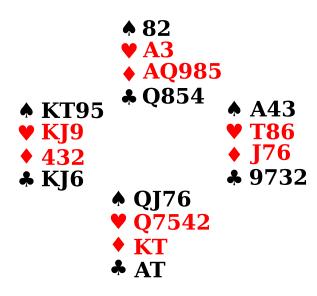

Error detection/correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work


Conclusion

Bridge


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Bridge

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Bridge

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

Future work

Conclusion

Traditionally

Secret inputs to each party generating a shared result

Computations done on computer

- Secret result, known inputs
- 'Computations' done by humans
- Intermediate state can be secret

Traditionally

Secret inputs to each party generating a shared result

Computations done on computer

- Secret result, known inputs
- 'Computations' done by humans
- Intermediate state can be secret

Traditionally

Secret inputs to each party generating a shared result

Computations done on computer

- Secret result, known inputs
- 'Computations' done by humans
- Intermediate state can be secret

Traditionally

Secret inputs to each party generating a shared result

Computations done on computer

- Secret result, known inputs
- 'Computations' done by humans
- Intermediate state can be secret

Traditionally

Secret inputs to each party generating a shared result

Computations done on computer

- Secret result, known inputs
- 'Computations' done by humans
- Intermediate state can be secret

Attacker model

Assume the players are inherently trustworthy

- They can cheat anyway if not
- Most players are trustworthy
- Players are sufficiently intelligent to make use of small amounts of information
- Main security goals:
 - Ensure neither dealer can deduce much about the hands while dealing...

... and having seen one of the hands.

Attacker model

Assume the players are inherently trustworthy

- They can cheat anyway if not
- Most players are trustworthy
- Players are sufficiently intelligent to make use of small amounts of information
- Main security goals:
 - Ensure neither dealer can deduce much about the hands while dealing...

... and having seen one of the hands.

Attacker model

- Assume the players are inherently trustworthy
 - They can cheat anyway if not
 - Most players are trustworthy
- Players are sufficiently intelligent to make use of small amounts of information
- Main security goals:
 - Ensure neither dealer can deduce much about the hands while dealing...

... and having seen one of the hands.

- 1. Generate random P_T ; $T = \{S\}_{E_{P_T}}$
- 2. Discard P_T
- 3. Generate random P_1 and P_1
- 4. Calculate P_2 s.t. $T = \{\{S_{P_l}\}_{E_{P_1}}\}_{E_{P_2}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- 5. Give $P_1 \& P_1$ to dealer 1
- 6. Give P_2 to dealer 2

- 1. Generate random P_T ; $T = \{S\}_{E_{P_T}}$
- 2. Discard P_T
- 3. Generate random P_1 and P_1
- 4. Calculate P_2 s.t. $T = \{\{S_{P_l}\}_{E_{P_1}}\}_{E_{P_2}}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- 5. Give $P_1 \& P_1$ to dealer 1
- 6. Give P_2 to dealer 2

- 1. Generate random P_T ; $T = \{S\}_{E_{P_T}}$
- 2. Discard P_T
- 3. Generate random P_1 and P_1
- 4. Calculate P_2 s.t. $T = \{\{S_{P_l}\}_{E_{P_1}}\}_{E_{P_2}}$

- 5. Give $P_1 \& P_1$ to dealer 1
- 6. Give P_2 to dealer 2

- 1. Generate random P_T ; $T = \{S\}_{E_{P_T}}$
- 2. Discard P_T
- 3. Generate random P_1 and P_l
- 4. Calculate P_2 s.t. $T = \{\{S_{P_l}\}_{E_{P_1}}\}_{E_{P_2}}$

- 5. Give $P_I \& P_1$ to dealer 1
- 6. Give P_2 to dealer 2

- 1. Generate random P_T ; $T = \{S\}_{E_{P_T}}$
- 2. Discard P_T
- 3. Generate random P_1 and P_l
- 4. Calculate P_2 s.t. $T = \{\{S_{P_l}\}_{E_{P_1}}\}_{E_{P_2}}$

- 5. Give $P_1 \& P_1$ to dealer 1
- 6. Give P_2 to dealer 2

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

Future work

Conclusion

Suit of the first card dealt

- ▶ Last thirteen cards in *P*¹ same suit.
- Likely that there will be a 1 in the last 13 numbers of P_1 .
- ▶ Implies first card of *P*² is that suit.
- First hand dealt in P_2 does not have a void in that suit.

Solution

Randomize the order of the suits in P_1 .

But...

Hands must be shuffled before going into the boards, else the second dealer can infer the suit order from the order of the cards in their hands.

Suit of the first card dealt

- Last thirteen cards in P₁ same suit.
- Likely that there will be a 1 in the last 13 numbers of P_1 .
- ▶ Implies first card of *P*² is that suit.
- ▶ First hand dealt in P₂ does not have a void in that suit.

Solution

Randomize the order of the suits in P_1 .

But...

Hands must be shuffled before going into the boards, else the second dealer can infer the suit order from the order of the cards in their hands.

Suit of the first card dealt

- Last thirteen cards in P₁ same suit.
- Likely that there will be a 1 in the last 13 numbers of P_1 .
- ▶ Implies first card of *P*² is that suit.
- First hand dealt in P_2 does not have a void in that suit.

Solution

Randomize the order of the suits in P_1 .

But. . .

Hands must be shuffled before going into the boards, else the second dealer can infer the suit order from the order of the cards in their hands.

Suit of the first card dealt

- Last thirteen cards in P₁ same suit.
- Likely that there will be a 1 in the last 13 numbers of P_1 .
- Implies first card of P₂ is that suit.
- First hand dealt in P_2 does not have a void in that suit.

Solution

Randomize the order of the suits in P_1 .

But...

Hands must be shuffled before going into the boards, else the second dealer can infer the suit order from the order of the cards in their hands.

Locating high cards

 High cards from first suit will be at the bottom of some of the piles

• One of positions $\{13, 26, 39, 52\}$ in P_2 will hold an ace.

Solution

Randomize the number of cards in each pile at the end of P_1 .

Locating high cards

 High cards from first suit will be at the bottom of some of the piles

• One of positions $\{13, 26, 39, 52\}$ in P_2 will hold an ace.

Solution

Randomize the number of cards in each pile at the end of P_1 .

Locating high cards

 High cards from first suit will be at the bottom of some of the piles

• One of positions $\{13, 26, 39, 52\}$ in P_2 will hold an ace.

Solution

Randomize the number of cards in each pile at the end of P_1 .

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

Future work

Conclusion

Case study

- Two trials, 3 sessions in November–December 2007, 6 sessions in January–March 2008.
- Approximately six dealers in total, three pairs.
- ▶ Time to deal 28 boards consistently 10–15 minutes.
- ▶ Observed error rate 4–6 boards, with one perfect result.

Case study

- Two trials, 3 sessions in November–December 2007, 6 sessions in January–March 2008.
- Approximately six dealers in total, three pairs.
- ► Time to deal 28 boards consistently 10–15 minutes.
- Observed error rate 4–6 boards, with one perfect result.

Case study

- Two trials, 3 sessions in November–December 2007, 6 sessions in January–March 2008.
- Approximately six dealers in total, three pairs.
- ► Time to deal 28 boards consistently 10–15 minutes.
- ▶ Observed error rate 4–6 boards, with one perfect result.

Case study

- Two trials, 3 sessions in November–December 2007, 6 sessions in January–March 2008.
- Approximately six dealers in total, three pairs.
- ► Time to deal 28 boards consistently 10–15 minutes.
- Observed error rate 4–6 boards, with one perfect result.

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

Conclusion

No detection

Ignore errors.

Detection only

Check at some point during the play against the hand record for that board.

Detection and correction

• Check the first time the board is played using curtain cards.

No detection

Ignore errors.

Detection only

 Check at some point during the play against the hand record for that board.

Detection and correction

• Check the first time the board is played using curtain cards.

No detection

Ignore errors.

Detection only

 Check at some point during the play against the hand record for that board.

Detection and correction

Check the first time the board is played using curtain cards.

No detection

Ignore errors.

Detection only

 Check at some point during the play against the hand record for that board.

Detection and correction

Check the first time the board is played using curtain cards.

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

Conclusion

Future work

More rigorous trials

- Montecarlo simulations
- Alternative primitives

Future work

- More rigorous trials
- Montecarlo simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Alternative primitives

Future work

- More rigorous trials
- Montecarlo simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Alternative primitives

Outline

Example deal

Bridge

Protocol

Flaws and corrections

Case study

Error detection/correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future work

Conclusion

Conclusion

Security is sufficient

- Doesn't take too long
- Error rate is not zero, but can be worked around

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

- Security is sufficient
- Doesn't take too long
- Error rate is not zero, but can be worked around

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

- Security is sufficient
- Doesn't take too long
- Error rate is not zero, but can be worked around

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Trial error results

Session	Failures	Recoverable Errors
14/03/08	1	3
07/03/08	2	3
22/02/08	0	0
15/02/08	2	2
07/02/08	3	4
31/02/08	4	2
30/11/07	5	2
16/11/07	7	1
01/11/07	4	1

Table: Errors in each session