A New Approach to E-Banking

Matthew Johnson matthew.johnson@cl.cam.ac.uk Simon Moore simon.moore@cl.cam.ac.uk

University of Cambridge, Computer Laboratory

The 12th Nordic Workshop on Secure IT-systems

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences

Software Defences Token Defences Mobile Phones

Internet Shopping

Conclusion

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences Software Defences

Token Defences Mobile Phones

Internet Shopping

Conclusion

Current Attacks

Common attacks very simple

- Just harvest credentials
- Easy to defend against
- Aim of current defences
- Complex attacks are easy
 - Real-time attacks—seen in the wild
 - Re-writing trojans—seen in the wild
 - DNS pharming—seen in the wild

Conclusion

Stopping simple attacks will just cause attackers to use complex attacks.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Current Attacks

Common attacks very simple

- Just harvest credentials
- Easy to defend against
- Aim of current defences
- Complex attacks are easy
 - Real-time attacks—seen in the wild
 - Re-writing trojans—seen in the wild
 - DNS pharming—seen in the wild

Conclusion

Stopping simple attacks will just cause attackers to use complex attacks.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Current Attacks

- Common attacks very simple
 - Just harvest credentials
 - Easy to defend against
 - Aim of current defences
- Complex attacks are easy
 - Real-time attacks—seen in the wild
 - Re-writing trojans—seen in the wild
 - DNS pharming—seen in the wild

Conclusion

Stopping simple attacks will just cause attackers to use complex attacks.

Current Attacks

- Common attacks very simple
 - Just harvest credentials
 - Easy to defend against
 - Aim of current defences
- Complex attacks are easy
 - Real-time attacks—seen in the wild
 - Re-writing trojans—seen in the wild
 - DNS pharming—seen in the wild

Conclusion

Stopping simple attacks will just cause attackers to use complex attacks.

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences Software Defences

Token Defences Mobile Phones

Internet Shopping

Conclusion

Secure UI

Secure UI

The key to securing internet banking is transparency for the user in what they are authorizing.

This requires a secure interface to the user, not just to the user's computer.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三国 のへで

Secure UI

Secure UI

The key to securing internet banking is transparency for the user in what they are authorizing.

This requires a secure interface to the user, not just to the user's computer.

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences

Token Defences Mobile Phones

Internet Shopping

Conclusion

Banking Dongle

- Cheap (enough)
- Secure communication
- Display
- Input
- PC can be compromized

Banking Dongle Architecture

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 필필 - 외۹⊙

Protocol

 $\begin{array}{l} \mathsf{Bank} \\ \mathsf{Session} \ \mathsf{Keys} \rightarrow \end{array}$

 $\mathsf{Transaction} \rightarrow$

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

 $\begin{array}{l} \text{Bank} \\ \text{Session Keys} \rightarrow \end{array}$

Transaction \rightarrow

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

 $\begin{array}{l} \text{Bank} \\ \text{Session Keys} \rightarrow \end{array}$

Transaction \rightarrow

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

 $\begin{array}{l} \text{Bank} \\ \text{Session Keys} \rightarrow \end{array}$

 $\mathsf{Transaction} \to$

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

 $\begin{array}{l} \mathsf{Bank} \\ \mathsf{Session} \ \mathsf{Keys} \rightarrow \end{array}$

 $\mathsf{Transaction} \to$

Device User \leftarrow Key ACK Transaction \rightarrow \leftarrow Auth

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

BankDeviceSession Keys \rightarrow \leftarrow Key ACKTransaction \rightarrow Transaction \rightarrow

 \leftarrow Auth

User

- Encryption with long-term keys
- Session encryption
- Trusted UI

Protocol

 $\begin{array}{cccc} \text{Bank} & \text{Device} & \text{User} \\ \text{Session Keys} \rightarrow & & \\ & \leftarrow \text{Key ACK} \\ \text{Transaction} \rightarrow & & \\ & & \\ & & \\ & & & \\ & & \leftarrow \text{Auth} \\ & \leftarrow \text{Auth} \end{array}$

- Encryption with long-term keys
- Session encryption
- Trusted UI

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences Software Defences Token Defences Mobile Phones

Internet Shopping

Conclusion

- Credit cards look out for the bank's interests
- Tills look out for the shop's interests
- Nothing looks out for the customer's interests

Can our device look out for the customer's interests?

- Credit cards look out for the bank's interests
- Tills look out for the shop's interests
- Nothing looks out for the customer's interests

Can our device look out for the customer's interests?

- Banks dispute claims of phantom transactions...
- yet claim they can't disclose keys
- Customer gets receipts with MACs for valid transactions...
- ... but cannot prove they didn't make a transaction

Provide the consumer with a verifiable audit trail which denies phantom transactions.

- Banks dispute claims of phantom transactions...
- ... yet claim they can't disclose keys
- Customer gets receipts with MACs for valid transactions...
- ... but cannot prove they didn't make a transaction

Provide the consumer with a verifiable audit trail which denies phantom transactions.

Protocol

Bank Session Keys →

Transaction \rightarrow

 $MAC_B(\dots)$

Full Audit Protocol

← Key ACK

Transaction -

← Auth, h(previous log entry),h(next log nonce), MAC_D(Transaction)

LOG: Transaction, $MAC_B(...)$, h(previous log entry),h(next log nonce), log nonce \leftarrow Auth

Protocol

 $\begin{array}{l} \mathsf{Bank}\\ \mathsf{Session} \ \mathsf{Keys}\\ \rightarrow \end{array}$

 $\mathsf{Transaction} \rightarrow$

 $MAC_B(\dots)$

Full Audit Protocol

Device

 $\leftarrow \mathsf{Key}\;\mathsf{ACK}$

 $\mathsf{Transaction} \to$

← Auth, h(previous log entry),h(next log nonce), MAC_D(Transaction)

LOG: Transaction, $MAC_B(...)$, h(previous log entry),h(next log nonce), log nonce $\leftarrow \mathsf{Auth}$

User

Protocol

 $\begin{array}{l} \mathsf{Bank}\\ \mathsf{Session} \ \mathsf{Keys}\\ \rightarrow \end{array}$

Transaction \rightarrow

 $MAC_B(\dots)$

Full Audit Protocol

Device

 $\leftarrow \mathsf{Key}\;\mathsf{ACK}$

 $\mathsf{Transaction} \to$

 $\leftarrow Auth$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

User

 $\leftarrow \text{Auth, } h(\text{previous log} \\ \text{entry}), h(\text{next log nonce}), \\ MAC_D(\text{Transaction})$

LOG: Transaction, $MAC_B(...)$, h(previous log entry),h(next log nonce), log nonce

Protocol

 $\begin{array}{l} \mathsf{Bank}\\ \mathsf{Session} \ \mathsf{Keys}\\ \rightarrow \end{array}$

 $\mathsf{Transaction} \rightarrow$

 $MAC_B(\dots)$

 \rightarrow

Full Audit Protocol

Device

 $\leftarrow \mathsf{Key}\;\mathsf{ACK}$

 $\mathsf{Transaction} \to$

 $\leftarrow \mathsf{Auth}$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

User

 $\leftarrow \text{Auth, } h(\text{previous log} \\ \text{entry}), h(\text{next log nonce}), \\ MAC_D(\text{Transaction})$

LOG: Transaction, $MAC_B(...)$, h(previous log entry),h(next log nonce), log nonce

Protocol

Bank Session Keys →

Transaction \rightarrow

 $MAC_B(\dots)$

 \rightarrow

Full Audit Protocol

Device

 $\leftarrow \mathsf{Key}\;\mathsf{ACK}$

 $\mathsf{Transaction} \to$

 $\leftarrow \mathsf{Auth}$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

User

 $\leftarrow \text{Auth, } h(\text{previous log} \\ \text{entry}), h(\text{next log nonce}), \\ MAC_D(\text{Transaction})$

LOG: Transaction, $MAC_B(...)$, h(previous log entry),h(next log nonce), log nonce

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences

Software Defences Token Defences Mobile Phones

Internet Shopping

Conclusion

Software Defences

- Mostly concentrate on common, simple attacks
- Heuristics and blacklists—can't catch all attacks
- Don't stop current attacks
- By definition can't stop a compromised terminal

Token Defences

Tokens

- APACS: must have dual-factor
- Often only window dressing
- Stop simple attacks
- ► Rarely more

Mobile Phones

- Don't prevent all attacks
- Do we trust mobile phones?

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences Software Defences

Token Defences Mobile Phones

Internet Shopping

Conclusion

Internet Shopping

 eBanking is not the only place you perform financial transactions

- Secure internet shopping is desirable
- Verified-by-Visa and SecureCode

Internet Shopping

 eBanking is not the only place you perform financial transactions

- Secure internet shopping is desirable
- Verified-by-Visa and SecureCode

Outline

Phishing

Secure UI

Banking Dongle Protocol

Consumer Protection Audit Protocol

Other Phishing Defences Software Defences

Token Defences Mobile Phones

Internet Shopping

Conclusion

Conclusion

Current anti-phishing concentrates on current phishing

- Complicated phishing is easy
- The banking dongle addresses all phishing attacks
- Also provides protection for the consumer

Conclusion

Current anti-phishing concentrates on current phishing

- Complicated phishing is easy
- The banking dongle addresses all phishing attacks
- Also provides protection for the consumer

Any Questions?

うせん 川田 スポッスポッス ロッ

$M_1 =$	I, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}, MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK" , Len, D	
$D \rightarrow B$:	"ACK", Len, IV, $\{M_2\}_{E_{\mathcal{K}_{BD1}}}$, MAC $_{\mathcal{K}_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{\mathcal{K}_{BD1}}}$, MAC _{\mathcal{K}_{BD2}} (M_3)	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_6)$	(6)

$M_1 =$	I, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{\mathcal{K}_{LT}}}, MAC_{\mathcal{K}_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK", Len, D	
$D \rightarrow B$:	"ACK", Len, IV , $\{M_2\}_{E_{K_{BD_1}}}$, $MAC_{K_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_3)$	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$	(6)

(1) $M_2 = I + 1, "ACK", Len, D$ $D \rightarrow B$: "ACK", Len, IV, $\{M_2\}_{E_{K_{BD_1}}}$, MAC_{K_{BD_2}(M₂) (2)(3)(4)(5)(6)

$M_1 =$	I , "INIT", Len, D, K_{BD1} , K_{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}, MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK" , Len, D	
$D \rightarrow B$:	" ACK ", Len, IV, $\{M_2\}_{E_{K_{BD1}}}$, $MAC_{K_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{\mathcal{K}_{BD1}}}$, MAC _{\mathcal{K}_{BD2}} (M_3)	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$	(6)

$M_1 =$	I, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}$, $MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK", Len, D	
$D \rightarrow B$:	"ACK", Len, IV , $\{M_2\}_{E_{K_{BD_1}}}$, $MAC_{K_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_3)$	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$	(6)

$M_1 =$	Ι, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}, MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK" , Len, D	
$D \rightarrow B$:	"ACK", Len, IV, $\{M_2\}_{E_{K_{BD_1}}}, MAC_{K_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_3)$	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_6)$	(6)

$M_1 =$	I, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}$, $MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	<i>I</i> + 1, " <i>ACK</i> ", <i>Len</i> , <i>D</i>	
$D \rightarrow B$:	" ACK ", Len, IV, $\{M_2\}_{E_{K_{BD_1}}}, MAC_{K_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_3)$	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N + 1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$	(6)

$M_1 =$	I, "INIT", Len, D, K _{BD1} , K _{BD2}	
$B \rightarrow D$:	"INIT", Len, IV, $\{M_1\}_{E_{K_{LT}}}, MAC_{K_{LTM}}(M_1)$	(1)
$M_2 =$	I + 1, "ACK" , Len, D	
$D \rightarrow B$:	"ACK", Len, IV, $\{M_2\}_{E_{\mathcal{K}_{BD1}}}$, MAC $_{\mathcal{K}_{BD_2}}(M_2)$	(2)
$M_3 =$	N, "TRANS", Len, D, transaction, Type	
$B \rightarrow D$:	"TRANS", Len, IV, $\{M_3\}_{E_{\mathcal{K}_{BD1}}}$, MAC _{\mathcal{K}_{BD2}} (M_3)	(3)
$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	N+1, "AUTH", Len, D, transaction, Type, Auth	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}$, $MAC_{K_{BD2}}(M_6)$	(6)

$$\begin{split} M_{1} &= I, "INIT", Len, D, K_{BD1}, K_{BD2} \\ B \to D : "INIT", Len, IV, \{M_{1}\}_{E_{K_{LT}}}, MAC_{K_{LTM}}(M_{1}) & (1) \\ M_{2} &= I + 1, "ACK", Len, D \\ D \to B : "ACK", Len, IV, \{M_{2}\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_{2}) & (2) \\ M_{3} &= N, "TRANS", Len, D, transaction, Type \\ B \to D : "TRANS", Len, IV, \{M_{3}\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_{3}) & (3) \\ D \to U : transaction & (4) \\ U \to D : Auth & (5) \\ M_{6} &= N + 1, "AUTH", Len, D, transaction, Type, Auth \\ D \to B : "AUTH", Len, IV, \{M_{6}\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_{6}) & (6) \end{split}$$

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	$N + 1$, "AUTH", Len, D, $h(O_{I+1})$, $h(L_{I-1})$,	
	transaction, Type, Auth, MAC_{K_D} (transaction)	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{\mathcal{K}_{BD1}}}, MAC_{\mathcal{K}_{BD2}}(M_6)$	(6)
$M_7 =$	$MAC_{K_B}(N, I, "TACK", Len, D, transaction,$	
	$h(O_{I+1}), h(L_{I-1}), Type, Auth, MAC_{K_D}$ (transactio	n))
$B \rightarrow D$:	"TACK", Len, IV, $\{M_7\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_7)$	(7)
$L_I =$	$N, I, Len, Type, transaction, M_7,$	
	$h(L_{I-1}), h(O_{I+1}), O_I, Auth$	
$D \rightarrow L$:	$L_I, MAC_{K_D}(L_I)$	(8)

$D \rightarrow U$:	transaction	(4)
$U \rightarrow D$:	Auth	(5)
$M_6 =$	$N + 1$, "AUTH", Len, D, $h(O_{I+1}), h(L_{I-1}), h(L$	
	transaction, $Type$, $Auth$, MAC_{K_D} (transaction)	
$D \rightarrow B$:	"AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$	(6)
$M_7 =$	$MAC_{K_B}(N, I, "TACK", Len, D, transaction,$	
	$h(O_{I+1}), h(L_{I-1}), Type, Auth, MAC_{K_D}$ (transaction)	ion))
$B \rightarrow D$:	"TACK", Len, IV, $\{M_7\}_{E_{\mathcal{K}_{BD1}}}$, $MAC_{\mathcal{K}_{BD2}}(M_7)$	(7)
$L_I =$	$N, I, Len, Type, transaction, M_7,$	
	$h(L_{I-1}), h(O_{I+1}), O_I, Auth$	
$D \rightarrow L$:	$L_I, MAC_{K_D}(L_I)$	(8)

\square	11	11.		trans		action	
ν	0		ιı		29	CUI	OII

 $U \rightarrow D$: Auth

(4)(5)

 $M_{6} = N + 1, "AUTH", Len, D, h(O_{I+1}), h(L_{I-1}),$ transaction, Type, Auth, MAC_{KD}(transaction)

$$D \to B$$
: "AUTH", Len, IV, $\{M_6\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_6)$ (6)

- $M_{7} = MAC_{K_{B}}(N, I, "TACK", Len, D, transaction,$ $h(O_{I+1}), h(L_{I-1}), Type, Auth, MAC_{K_{D}}(transaction))$
- $B \to D$: "TACK", Len, IV, $\{M_7\}_{E_{K_{BD1}}}, MAC_{K_{BD2}}(M_7)$ (7)
 - $L_{I} = N, I, Len, Type, transaction, M_{7},$ $h(L_{I-1}), h(O_{I+1}), O_{I}, Auth$

 $D \rightarrow L: L_I, MAC_{K_D}(L_I)$

(8)

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Licence Attribution

Original SecurID Image by Mateusz Adamowski http://commons.wikimedia.org/wiki/User:Mateusza licenced under Creative Commons Attribution ShareAlike 1.0 http://creativecommons.org/licenses/by-sa/1.0/. You are free to distribute my altered version under the same licence.

Copyright Matthew Johnson

Redistribution and use in source and binary forms, with or without modification, are permitted provided that redistribution retain the above copyright notice and these conditions.